Trends Identified

The Platform (R)evolution: Defining ecosystems, redefining industries
Among the Global 2000, digital industry platforms and ecosystems are fueling the next wave of breakthrough innovation and disruptive growth. Increasingly, platformbased companies are capturing more of the digital economy’s opportunities for strong growth and profitability. Rapid advances in cloud and mobility not only are eliminating the technology and cost barriers associated with such platforms, but also are opening up this new playing field to enterprises across industries and geographies. In short: platform-based ecosystems are the new plane of competition.
2015
Accenture Technology Vision 2015
Accenture
Intelligent Enterprise: Huge data, smarter systems—better business
The next level of operational excellence and the next generation of software services will both emerge from the latest gains in software intelligence. Until now, increasingly capable software has been geared to help employees make better and faster decisions. But with an influx of big data—and advances in processing power, data science, and cognitive technology— software intelligence is helping machines to make even more, better informed decisions. Business and technology leaders must now view software intelligence not as a pilot or a oneoff project, but as an across-the-board functionality—one that will drive new levels of evolution and discovery, propelling innovation throughout the enterprise.
2015
Accenture Technology Vision 2015
Accenture
Workforce Reimagined: Collaboration at the intersection of humans and machines
The push to go digital is amplifying the need for humans and machines to do more, together. Advances in natural interfaces, wearable devices, and smart machines will present new opportunities for companies to empower their workers through technology. This will also surface new challenges in managing a collaborative workforce composed of both people and machines. Successful businesses will recognize the benefits of human talent and intelligent technology working side by side in collaboration—and they will embrace them both as critical members of the reimagined workforce.
2015
Accenture Technology Vision 2015
Accenture
Fuel cell vehicles
“Fuel cell” vehicles have been long promised, as they potentially offer several major advantages over electric and hydrocarbon-powered vehicles. However, the technology has only now begun to reach the stage where automotive companies are planning to launch them for consumers. Initial prices are likely to be in the range of $70,000, but should come down significantly as volumes increase within the next couple of years. Unlike batteries, which must be charged from an external source, fuel cells generate electricity directly, using fuels such as hydrogen or natural gas. In practice, fuel cells and batteries are combined, with the fuel cell generating electricity and the batteries storing this energy until demanded by the motors that drive the vehicle. Fuel cell vehicles are therefore hybrids, and will likely also deploy regenerative braking – a key capability for maximizing efficiency and range. Unlike battery-powered electric vehicles, fuel cell vehicles behave as any conventionally fuelled vehicle. With a long cruising range – up to 650 km per tank (the fuel is usually compressed hydrogen gas) – a hydrogen fuel refill only takes about three minutes. Hydrogen is clean-burning, producing only water vapour as waste, so fuel cell vehicles burning hydrogen will be zero-emission, an important factor given the need to reduce air pollution. There are a number of ways to produce hydrogen without generating carbon emissions. Most obviously, renewable sources of electricity from wind and solar sources can be used to electrolyse water – though the overall energy efficiency of this process is likely to be quite low. Hydrogen can also be split from water in high-temperature nuclear reactors or generated from fossil fuels such as coal or natural gas, with the resulting CO2 captured and sequestered rather than released into the atmosphere. As well as the production of cheap hydrogen on a large scale, a significant challenge is the lack of a hydrogen distribution infrastructure that would be needed to parallel and eventually replace petrol and diesel filling stations. Long distance transport of hydrogen, even in a compressed state, is not considered economically feasible today. However, innovative hydrogen storage techniques, such as organic liquid carriers that do not require high-pressure storage, will soon lower the cost of long-distance transport and ease the risks associated with gas storage and inadvertent release. Mass-market fuel cell vehicles are an attractive prospect, because they will offer the range and fuelling convenience of today’s diesel and petrol-powered vehicles while providing the benefits of sustainability in personal transportation. Achieving these benefits will, however, require the reliable and economical production of hydrogen from entirely low-carbon sources, and its distribution to a growing fleet of vehicles (expected to number in the many millions within a decade).
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Next-generation robotics
The popular imagination has long foreseen a world where robots take over all manner of everyday tasks.This robotic future has stubbornly refused to materialize, however, with robots still limited to factory assembly lines and other controlled tasks. Although heavily used (in the automotive industry, for instance) these robots are large and dangerous to human co-workers; they have to be separated by safety cages. Advances in robotics technology are making human-machine collaboration an everyday reality. Better and cheaper sensors make a robot more able to understand and respond to its environment. Robot bodies are becoming more adaptive and flexible, with designers taking inspiration from the extraordinary flexibility and dexterity of complex biological structures, such as the human hand. And robots are becoming more connected, benefiting from the cloud-computing revolution by being able to access instructions and information remotely, rather than having to be programmed as a fully autonomous unit. The new age of robotics takes these machines away from the big manufacturing assembly lines, and into a wide variety of tasks. Using GPS technology, just like smartphones, robots are beginning to be used in precision agriculture for weed control and harvesting. In Japan, robots are being trialled in nursing roles: they help patients out of bed and support stroke victims in regaining control of their limbs. Smaller and more dextrous robots, such as Dexter Bot, Baxter and LBR iiwa, are designed to be easily programmable and to handle manufacturing tasks that are laborious or uncomfortable for human workers. Indeed, robots are ideal for tasks that are too repetitive or dangerous for humans to undertake, and can work 24 hours a day at a lower cost than human workers. In reality, new-generation robotic machines are likely to collaborate with humans rather than replace them. Even considering advances in design and artificial intelligence, human involvement and oversight will remain essential. There remains the risk that robots may displace human workers from jobs, although previous generations of automation have tended to lead to higher productivity and growth with benefits throughout the economy. Decades-old fears of networked robots running out of control may become more salient with next generation robotics linked into the web – but more likely familiarisation as people employ domestic robots to do household chores will reduce fears rather than fan them. And new research into social robots – that know how to collaborate and build working alliances with humans – means that a future where robots and humans work together, each to do what it does best – is a strong likelihood. Nevertheless, however, the next generation of robotics poses novel questions for fields from philosophy to anthropology about the human relationship to machines.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Recyclable thermoset plastics
Plastics are divided into thermoplastics and thermoset plastics. The former can be heated and shaped many times, and are ubiquitous in the modern world, comprising everything from children’s toys to lavatory seats. Because they can be melted down and reshaped, thermoplastics are generally recyclable. Thermoset plastics however can only be heated and shaped once, after which molecular changes mean that they are “cured”, retaining their shape and strength even when subject to intense heat and pressure.Due to this durability, thermoset plastics are a vital part of our modern world, and are used in everything from mobile phones and circuit boards to the aerospace industry. But the same characteristics that have made them essential in modern manufacturing also make them impossible to recycle. As a result, most thermoset polymers end up as landfill. Given the ultimate objective of sustainability, there has long been a pressing need for recyclability in thermoset plastics. In 2014 critical advances were made in this area, with the publication of a landmark paper in the journal Science announcing the discovery of new classes of thermosetting polymers that are recyclable. Called poly(hexahydrotriazine)s, or PHTs, these can be dissolved in strong acid, breaking apart the polymer chains into component monomers that can then be reassembled into new products. Like traditional unrecyclable thermosets, these new structures are rigid, resistant to heat and tough, with the same potential applications as their unrecyclable forerunners. Although no recycling is 100% efficient, this innovation – if widely deployed – should speed up the move towards a circular economy with a big reduction in landfill waste from plastics. We expect recyclable thermoset polymers to replace unrecyclable thermosets within five years, and to be ubiquitous in newly manufactured goods by 2025.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Precise genetic-engineering techniques
Conventional genetic engineering has long caused controversy. However, new techniques are emerging that allow us to directly “edit” the genetic code of plants to make them, for example, more nutritious or better able to cope with a changing climate. Currently, the genetic engineering of crops relies on the bacterium agrobacterium tumefaciens to transfer desired DNA into the target genome. The technique is proven and reliable, and despite widespread public fears, there is a consensus in the scientific community that genetically modifying organisms using this technique is no more risky than modifying them using conventional breeding. However, while agrobacterium is useful, more precise and varied genome-editing techniques have been developed in recent years.These include ZFNs, TALENS and, more recently, the CRISPR-Cas9 system, which evolved in bacteria as a defence mechanism against viruses. CRISPR-Cas9 system uses an RNA molecule to target DNA, cutting to a known, user-selected sequence in the target genome. This can disable an unwanted gene or modify it in a way that is functionally indistinguishable from a natural mutation. Using “homologous recombination”, CRISPR can also be used to insert new DNA sequences, or even whole genes, into the genome in a precise way. Another aspect of genetic engineering that appears poised for a major advance is the use of RNA interference (RNAi) in crops. RNAi is effective against viruses and fungal pathogens, and can also protect plants against insect pests, reducing the need for chemical pesticides. Viral genes have been used to protect papaya plants against the ringspot virus, for example, with no sign of resistance evolving in over a decade of use in Hawaii. RNAi may also benefit major staple-food crops, protecting wheat against stem rust, rice against blast, potato against blight and banana against fusarium wilt. Many of these innovations will be particularly beneficial to smaller farmers in developing countries. As such, genetic engineering may become less controversial, as people recognize its effectiveness at boosting the incomes and improving the diets of millions of people. In addition, more precise genome editing may allay public fears, especially if the resulting plant or animal is not considered transgenic because no foreign genetic material is introduced. Taken together, these techniques promise to advance agricultural sustainability by reducing input use in multiple areas, from water and land to fertilizer, while also helping crops to adapt to climate change.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Additive manufacturing
As the name suggests, additive manufacturing is the opposite of subtractive manufacturing. The latter is how manufacturing has traditionally been done: starting with a larger piece of material (wood, metal, stone, etc), layers are removed, or subtracted, to leave the desired shape. Additive manufacturing instead starts with loose material, either liquid or powder, and then builds it into a three-dimensional shape using a digital template. 3D products can be highly customized to the end user, unlike mass-produced manufactured goods. An example is the company Invisalign, which uses computer imaging of customers’ teeth to make near-invisible braces tailored to their mouths. Other medical applications are taking 3D printing in a more biological direction: by directly printing human cells, it is now possible to create living tissues that may find potential application in drug safety screening and, ultimately, tissue repair and regeneration. An early example of this bioprinting is Organovo’s printed liver-cell layers, which are aimed at drug testing, and may eventually be used to create transplant organs. Bioprinting has already been used to generate skin and bone, as well as heart and vascular tissue, which offer huge potential in future personalized medicine. An important next stage in additive manufacturing would be the 3D printing of integrated electronic components, such as circuit boards. Nano-scale computer parts, like processors, are difficult to manufacture this way because of the challenges of combining electronic components with others made from multiple different materials. 4D printing now promises to bring in a new generation of products that can alter themselves in response to environmental changes, such as heat and humidity. This could be useful in clothes or footwear, for example, as well as in healthcare products, such as implants designed to change in the human body. Like distributed manufacturing, additive manufacturing is potentially highly disruptive to conventional processes and supply chains. But it remains a nascent technology today, with applications mainly in the automotive, aerospace and medical sectors. Rapid growth is expected over the next decade as more opportunities emerge and innovation in this technology brings it closer to the mass market.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Emergent artificial intelligence
Artificial intelligence (AI) is, in simple terms, the science of doing by computer the things that people can do. Over recent years, AI has advanced significantly: most of us now use smartphones that can recognize human speech, or have travelled through an airport immigration queue using image-recognition technology. Self-driving cars and automated flying drones are now in the testing stage before anticipated widespread use, while for certain learning and memory tasks, machines now outperform humans. Watson, an artificially intelligent computer system, beat the best human candidates at the quiz game Jeopardy. Artificial intelligence, in contrast to normal hardware and software, enables a machine to perceive and respond to its changing environment. Emergent AI takes this a step further, with progress arising from machines that learn automatically by assimilating large volumes of information. An example is NELL, the Never-Ending Language Learning project from Carnegie Mellon University, a computer system that not only reads facts by crawling through hundreds of millions of web pages, but attempts to improve its reading and understanding competence in the process in order to perform better in the future. Like next-generation robotics, improved AI will lead to significant productivity advances as machines take over – and even perform better – at certain tasks than humans. There is substantial evidence that self-driving cars will reduce collisions, and resulting deaths and injuries, from road transport, as machines avoid human errors, lapses in concentration and defects in sight, among other problems. Intelligent machines, having faster access to a much larger store of information, and able to respond without human emotional biases, might also perform better than medical professionals in diagnosing diseases. The Watson system is now being deployed in oncology to assist in diagnosis and personalized, evidence-based treatment options for cancer patients. Long the stuff of dystopian sci-fi nightmares, AI clearly comes with risks – the most obvious being that super-intelligent machines might one day overcome and enslave humans. This risk, while still decades away, is taken increasingly seriously by experts, many of whom signed an open letter coordinated by the Future of Life Institute in January 2015 to direct the future of AI away from potential pitfalls. More prosaically, economic changes prompted by intelligent computers replacing human workers may exacerbate social inequalities and threaten existing jobs. For example, automated drones may replace most human delivery drivers, and self-driven short-hire vehicles could make taxis increasingly redundant.On the other hand, emergent AI may make attributes that are still exclusively human – creativity, emotions, interpersonal relationships – more clearly valued. As machines grow in human intelligence, this technology will increasingly challenge our view of what it means to be human, as well as the risks and benefits posed by the rapidly closing gap between man and machine.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Distributed manufacturing
Distributed manufacturing turns on its head the way we make and distribute products. In traditional manufacturing, raw materials are brought together, assembled and fabricated in large centralized factories into identical finished products that are then distributed to the customer. In distributed manufacturing, the raw materials and methods of fabrication are decentralized, and the final product is manufactured very close to the final customer. In essence, the idea of distributed manufacturing is to replace as much of the material supply chain as possible with digital information. To manufacture a chair, for example, rather than sourcing wood and fabricating it into chairs in a central factory, digital plans for cutting the parts of a chair can be distributed to local manufacturing hubs using computerized cutting tools known as CNC routers. Parts can then be assembled by the consumer or by local fabrication workshops that can turn them into finished products. One company already using this model is the US furniture company AtFAB. Current uses of distributed manufacturing rely heavily on the DIY “maker movement”, in which enthusiasts use their own local 3D printers and make products out of local materials. There are elements of open-source thinking here, in that consumers can customize products to their own needs and preferences. Instead of being centrally driven, the creative design element can be more crowdsourced; products may take on an evolutionary character as more people get involved in visualizing and producing them. Distributed manufacturing is expected to enable a more efficient use of resources, with less wasted capacity in centralized factories. It also lowers the barriers to market entry by reducing the amount of capital required to build the first prototypes and products. Importantly, it should reduce the overall environmental impact of manufacturing: digital information is shipped over the web rather than physical products over roads or rails, or on ships; and raw materials are sourced locally, further reducing the amount of energy required for transportation. If it becomes more widespread, distributed manufacturing will disrupt traditional labour markets and the economics of traditional manufacturing. It does pose risks: it may be more difficult to regulate and control remotely manufactured medical devices, for example, while products such as weapons may be illegal or dangerous. Not everything can be made via distributed manufacturing, and traditional manufacturing and supply chains will still have to be maintained for many of the most important and complex consumer goods. Distributed manufacturing may encourage broader diversity in objects that are today standardized, such as smartphones and automobiles. Scale is no object: one UK company, Facit Homes, uses personalized designs and 3D printing to create customized houses to suit the consumer. Product features will evolve to serve different markets and geographies, and there will be a rapid proliferation of goods and services to regions of the world not currently well served by traditional manufacturing.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)