Trends Identified
Bioinformatics
Bioinformatics involves storing, analyzing, modeling and sharing large amounts of biological data. Current applications of bioinformatics include DNA barcoding, new bioproducts (such as Millennium Asparagus and biodiesel), modeling disease outbreaks and personal genomics. Our capacity to analyze large amounts of data and our ability to affect traits in plants, animals and humans will increase dramatically. Consider the potential of a widespread medical device costing under $1,000 that sequences your genome, connects to online databases, profiles your genetic history and future, highlights your risk profile, and identifies opportunities to mitigate risks. Bioinformatics holds the promise of tailoring medical and drug treatments to the individual through preventative medicine, using biomarkers to model adverse drug reactions, and helping to understand the complex interplay between genetics and environment. Bioinformatics will fundamentally change the way we think of health care systems.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Digital Panopticon
Biometrics are already making exponential advances— technologies that were recently in the realm of science fiction now shape the reality of billions of people’s lives. Facial recognition, gait analysis, digital assistants, affective computing, microchipping, digital lip reading, fingerprint sensors—as these and other technologies proliferate, we move into a world in which everything about us is captured, stored and subjected to artificial intelligence (AI) algorithms. This makes possible increasingly individualized public and private services, but also new forms of conformity and micro-targeted persuasion. If humans are increasingly replaced by machines in crucial decision loops, the result may lead not only to greater efficiency but also to greater societal rigidity. Global politics will be affected: authoritarianism is easier in a world of total visibility and traceability, while democracy may turn out to be more difficult—many societies are already struggling to balance threats to privacy, trust and autonomy against promises of increased security, efficiency and novelty. Geopolitically, the future may hinge in part on how societies with different values treat new reservoirs of data. Strong systems of accountability for governments and companies using these technologies could help to mitigate the risks to individuals from biometric surveillance. This will be possible in some domestic contexts, but developing wider global norms with any traction will be a struggle.
2019
The Global Risks Report 2019 14th Edition
World Economic Forum (WEF)
Bioplastic
Bioplastic is a new material that has all the functionalities of synthetic resins but can be naturally degraded by burial or long-term sun exposure. However, the production cost is still high and the material is not diverse enough to be widely used as synthetic resins. It is expected that the development of the bioplastic technology can make great economic contribution as well as solving environmental issues. Also, this technology would be helpful in moving to the bioeconomy by causing social environmental changes.
2012
KISTEP 10 Emerging Technologies 2012
South Korea, Korea Institute of S&T Evaluation and Planning (KISTEP)
Bioenergy grows
Bioreactors using algae modified through synthetic biology will likely allow firms to produce cheap fuels that use only sunlight and waste CO2 and water as inputs. Production costs for diesel and ethanol through this “green chemistry” could reach $0.30/L in sunny geographies. Since CO2 could become a valuable commodity as an input for bioreactors, carbon-emiting facilities might diversify into green manufacturing plants. Greener ways to process the oil sands are possible.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Biomaterials and organic synthesis products to replace traditional chemical industry products
Biotechnological process to produce biomaterials and organic synthesis products out of renewable raw materials, to replace traditional chemical production and develop innovative products with unique properties would involve the development of the new strains of microorganisms and microbial consortia involved in these processes as well as the development of technologies to produce biosynthetic monomers and polymerisation methods. The replacement of chemical manufacturing with manufacturing based on biotechnological processes to produce materials and organic synthesis products from renewable raw materials will make it possible to create products with a high level of purity (including optically pure organic substances to synthesise drugs) and reduce the cost of their manufacture. New types of biomaterials will have a wide range of applications on account of their special characteristics. A number of products (bioplastics, etc.) will have valuable properties such as biodegradability, and this, in turn, will provide an impetus for the creation of new biodegradable materials for medical and industrial purposes.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Metabolic engineering products
Biotechnological processes to produce biologically active compounds based on targeted modification of the producing organism’s pathways using metabolic engineering techniques will make it possible to produce amino acides, vitamins, antibiotics, enzymes, recombinant proteins and other products. The increased effectiveness of new methods of metabolic engineering and bio- engineering against the backdrop of traditional methods (random mutagenesis, etc.) reduces the cost of the product and creates the necessary conditions for mass application in various industries.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Biotechnology processes to obtain recombinant proteins of plant and animal origin
Biotechnological processes to produce recombinant proteins for industrial (enzymes, biopolymers, etc.) and medical (vaccines, antibodies, enzymes) use in plants and animals, or “biofactories”, are cheaper and more effective compared with traditional technologies based on using microbial cultures and animal cells. Thus, technologies to produce recombinant proteins in plants using viral systems, and in the milk of transgenic animals, are one of the key prospective developments in this field.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Biotechnology
Biotechnology encompasses a wide range of issues entailing the biological modification of organisms and non-living materials to develop new properties, which have application in medicine, food science and agriculture, and industrial manufacturing. Developments in biotechnology are likely to be swift as indicated by the significant increase in global biotech revenues ($23 billion in 2000 to $50 billion in 2005) and the purchase by large pharmaceutical companies of ‘biotech’ firms in order to secure the most effective avenues for future drug development.
2010
Global strategic trends - out to 2040
UK, Ministry of Defence
Bio-technology
Biotechnology, genomics, and proteomics 1 are now major driving forces in the biological sciences and are increasingly being applied in the study of environmental issues, medicine and pharmaceuticals, infectious diseases, and modifications of food crops. Bio-technology has the potential to lead to sustainable solutions for a range of sustainable development issues. 2 or example, genetically modified organisms could help address food insecurity in developing countries, but their impact on ecosystems, human health and community values may need to be better understood to be considered a truly sustainable solution. 3 Experience has shown that deployment of such technologies needs to consider the local situations and possible trade-offs. 4 Synthetic biology is a field of great promise and possible dangers. Tailor-made medical solutions, gene therapy, technology disruption in the food industry, bio-engineered medicines, and precise bio-inspired drug delivery systems that target specific infected cells - together with stem cells - give many promises. However, if inappropriately used, it could cause irreversible changes to human health and environment. 5, 6, 7 Synthetic biology requires effective policies and frameworks to manage all stages of their life- time, including manufacturing, distribution and use, as well as safe disposal or where possible effective recycling. 8, 9, 10 New and emerging gene-editing technologies and their implications, benefits, and potential ethical problems for biotechnology and medicine have generated international scientific debate, with recommendations to establish norms concerning acceptable uses of human germline editing and harmonize regulations. 10 Genuine “human engineering” may not be far off in the future, when technologies related to gene-editing, stem cells and computational models of the human brain will be combined.
2016
Global sustainable development report 2016
United Nations
Cryptocurrency
Bitcoin may get all the ink, but there are plenty of other cryptocurrencies, and more to come. Evans says that the way they enable distributed value storage without needing central authority is valuable at a time when people have lost faith in institutions and seek more control over money without governmental intrusion.
2018
The Most Important Tech Trends Of 2018, According To Top VCs
Fast Company