Trends Identified

Emergent artificial intelligence
Artificial intelligence (AI) is, in simple terms, the science of doing by computer the things that people can do. Over recent years, AI has advanced significantly: most of us now use smartphones that can recognize human speech, or have travelled through an airport immigration queue using image-recognition technology. Self-driving cars and automated flying drones are now in the testing stage before anticipated widespread use, while for certain learning and memory tasks, machines now outperform humans. Watson, an artificially intelligent computer system, beat the best human candidates at the quiz game Jeopardy. Artificial intelligence, in contrast to normal hardware and software, enables a machine to perceive and respond to its changing environment. Emergent AI takes this a step further, with progress arising from machines that learn automatically by assimilating large volumes of information. An example is NELL, the Never-Ending Language Learning project from Carnegie Mellon University, a computer system that not only reads facts by crawling through hundreds of millions of web pages, but attempts to improve its reading and understanding competence in the process in order to perform better in the future. Like next-generation robotics, improved AI will lead to significant productivity advances as machines take over – and even perform better – at certain tasks than humans. There is substantial evidence that self-driving cars will reduce collisions, and resulting deaths and injuries, from road transport, as machines avoid human errors, lapses in concentration and defects in sight, among other problems. Intelligent machines, having faster access to a much larger store of information, and able to respond without human emotional biases, might also perform better than medical professionals in diagnosing diseases. The Watson system is now being deployed in oncology to assist in diagnosis and personalized, evidence-based treatment options for cancer patients. Long the stuff of dystopian sci-fi nightmares, AI clearly comes with risks – the most obvious being that super-intelligent machines might one day overcome and enslave humans. This risk, while still decades away, is taken increasingly seriously by experts, many of whom signed an open letter coordinated by the Future of Life Institute in January 2015 to direct the future of AI away from potential pitfalls. More prosaically, economic changes prompted by intelligent computers replacing human workers may exacerbate social inequalities and threaten existing jobs. For example, automated drones may replace most human delivery drivers, and self-driven short-hire vehicles could make taxis increasingly redundant.On the other hand, emergent AI may make attributes that are still exclusively human – creativity, emotions, interpersonal relationships – more clearly valued. As machines grow in human intelligence, this technology will increasingly challenge our view of what it means to be human, as well as the risks and benefits posed by the rapidly closing gap between man and machine.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Distributed manufacturing
Distributed manufacturing turns on its head the way we make and distribute products. In traditional manufacturing, raw materials are brought together, assembled and fabricated in large centralized factories into identical finished products that are then distributed to the customer. In distributed manufacturing, the raw materials and methods of fabrication are decentralized, and the final product is manufactured very close to the final customer. In essence, the idea of distributed manufacturing is to replace as much of the material supply chain as possible with digital information. To manufacture a chair, for example, rather than sourcing wood and fabricating it into chairs in a central factory, digital plans for cutting the parts of a chair can be distributed to local manufacturing hubs using computerized cutting tools known as CNC routers. Parts can then be assembled by the consumer or by local fabrication workshops that can turn them into finished products. One company already using this model is the US furniture company AtFAB. Current uses of distributed manufacturing rely heavily on the DIY “maker movement”, in which enthusiasts use their own local 3D printers and make products out of local materials. There are elements of open-source thinking here, in that consumers can customize products to their own needs and preferences. Instead of being centrally driven, the creative design element can be more crowdsourced; products may take on an evolutionary character as more people get involved in visualizing and producing them. Distributed manufacturing is expected to enable a more efficient use of resources, with less wasted capacity in centralized factories. It also lowers the barriers to market entry by reducing the amount of capital required to build the first prototypes and products. Importantly, it should reduce the overall environmental impact of manufacturing: digital information is shipped over the web rather than physical products over roads or rails, or on ships; and raw materials are sourced locally, further reducing the amount of energy required for transportation. If it becomes more widespread, distributed manufacturing will disrupt traditional labour markets and the economics of traditional manufacturing. It does pose risks: it may be more difficult to regulate and control remotely manufactured medical devices, for example, while products such as weapons may be illegal or dangerous. Not everything can be made via distributed manufacturing, and traditional manufacturing and supply chains will still have to be maintained for many of the most important and complex consumer goods. Distributed manufacturing may encourage broader diversity in objects that are today standardized, such as smartphones and automobiles. Scale is no object: one UK company, Facit Homes, uses personalized designs and 3D printing to create customized houses to suit the consumer. Product features will evolve to serve different markets and geographies, and there will be a rapid proliferation of goods and services to regions of the world not currently well served by traditional manufacturing.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
‘Sense and avoid’ drones
Unmanned aerial vehicles, or drones, have become an important and controversial part of military capacity in recent years. They are also used in agriculture, for filming and multiple other applications that require cheap and extensive aerial surveillance. But so far all these drones have had human pilots; the difference is that their pilots are on the ground and fly the aircraft remotely.The next step with drone technology is to develop machines that fly themselves, opening them up to a wider range of applications. For this to happen, drones must be able to sense and respond to their local environment, altering their height and flying trajectory in order to avoid colliding with other objects in their path. In nature, birds, fish and insects can all congregate in swarms, each animal responding to its neighbour almost instantaneously to allow the swarm to fly or swim as a single unit. Drones can emulate this. With reliable autonomy and collision avoidance, drones can begin to take on tasks too dangerous or remote for humans to carry out: checking electric power lines, for example, or delivering medical supplies in an emergency. Drone delivery machines will be able to find the best route to their destination, and take into account other flying vehicles and obstacles. In agriculture, autonomous drones can collect and process vast amounts of visual data from the air, allowing precise and efficient use of inputs such as fertilizer and irrigation. In January 2014, Intel and Ascending Technologies showcased prototype multi-copter drones that could navigate an on-stage obstacle course and automatically avoid people who walked into their path. The machines use Intel’s RealSense camera module, which weighs just 8g and is less than 4mm thick. This level of collision avoidance will usher in a future of shared airspace, with many drones flying in proximity to humans and operating in and near the built environment to perform a multitude of tasks. Drones are essentially robots operating in three, rather than two, dimensions; advances in next-generation robotics technology will accelerate this trend. Flying vehicles will never be risk-free, whether operated by humans or as intelligent machines. For widespread adoption, sense and avoid drones must be able to operate reliably in the most difficult conditions: at night, in blizzards or dust storms. Unlike our current digital mobile devices (which are actually immobile, since we have to carry them around), drones will be transformational as they are self-mobile and have the capacity of flying in the three-dimensional world that is beyond our direct human reach. Once ubiquitous, they will vastly expand our presence, productivity and human experience.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Neuromorphic technology
Even today’s best supercomputers cannot rival the sophistication of the human brain. Computers are linear, moving data back and forth between memory chips and a central processor over a high-speed backbone. The brain, on the other hand, is fully interconnected, with logic and memory intimately cross-linked at billions of times the density and diversity of that found in a modern computer. Neuromorphic chips aim to process information in a fundamentally different way from traditional hardware, mimicking the brain’s architecture to deliver a huge increase in a computer’s thinking and responding power. Miniaturization has delivered massive increases in conventional computing power over the years, but the bottleneck of shifting data constantly between stored memory and central processors uses large amounts of energy and creates unwanted heat, limiting further improvements. In contrast, neuromorphic chips can be more energy efficient and powerful, combining data-storage and data-processing components into the same interconnected modules. In this sense, the system copies the networked neurons that, in their billions, make up the human brain. Neuromorphic technology will be the next stage in powerful computing, enabling vastly more rapid processing of data and a better capacity for machine learning. IBM’s million-neuron TrueNorth chip, revealed in prototype in August 2014, has a power efficiency for certain tasks that is hundreds of times superior to a conventional CPU (Central Processing Unit), and more comparable for the first time to the human cortex. With vastly more compute power available for far less energy and volume, neuromorphic chips should allow more intelligent small-scale machines to drive the next stage in miniaturization and artificial intelligence. Potential applications include: drones better able to process and respond to visual cues, much more powerful and intelligent cameras and smartphones, and data-crunching on a scale that may help unlock the secrets of financial markets or climate forecasting. Computers will be able to anticipate and learn, rather than merely respond in pre-programmed ways.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Digital genome
While the first sequencing of the 3.2 billion base pairs of DNA that make up the human genome took many years and cost tens of millions of dollars, today your genome can be sequenced and digitized in minutes and at the cost of only a few hundred dollars. The results can be delivered to your laptop on a USB stick and easily shared via the internet. This ability to rapidly and cheaply determine our individual unique genetic make-up promises a revolution in more personalized and effective healthcare. Many of our most intractable health challenges, from heart disease to cancer, have a genetic component. Indeed, cancer is best described as a disease of the genome. With digitization, doctors will be able to make decisions about a patient’s cancer treatment informed by a tumour’s genetic make-up. This new knowledge is also making precision medicine a reality by enabling the development of highly targeted therapies that offer the potential for improved treatment outcomes, especially for patients battling cancer. Like all personal information, a person’s digital genome will need to be safeguarded for privacy reasons. Personal genomic profiling has already raised challenges, with regard to how people respond to a clearer understanding of their risk of genetic disease, and how others – such as employers or insurance companies – might want to access and use the information. However, the benefits are likely to outweigh the risks, because individualized treatments and targeted therapies can be developed with the potential to be applied across all the many diseases that are driven or assisted by changes in DNA.
2015
Top 10 emerging technologies of 2015
World Economic Forum (WEF)
Body-adapted Wearable Electronics
From Google Glass to the Fitbit wristband, wearable technology has generated significant attention over the past year, with most existing devices helping people to better understand their personal health and fitness by monitoring exercise, heart rate, sleep patterns, and so on. The sector is shifting beyond external wearables like wristbands or clip-on devices to “body-adapted” electronics that further push the ever-shifting boundary between humans and technology.The new generation of wearables is designed to adapt to the human body’s shape at the place of deployment. These wearables are typically tiny, packed with a wide range of sensors and a feedback system, and camouflaged to make their use less intrusive and more socially acceptable. These virtually invisible devices include earbuds that monitor heart rate, sensors worn under clothes to track posture, a temporary tattoo that tracks health vitals and haptic shoe soles that communicate GPS directions through vibration alerts felt by the feet. The applications are many and varied: haptic shoes are currently proposed for helping blind people navigate, while Google Glass has already been worn by oncologists to assist in surgery via medical records and other visual information accessed by voice commands.Technology analysts consider that success factors for wearable products include device size, non-invasiveness, and the ability to measure multiple parameters and provide real-time feedback that improves user behaviour. However, increased uptake also depends on social acceptability as regards privacy. For example, concerns have been raised about wearable devices that use cameras for facial recognition and memory assistance. Assuming these challenges can be managed, analysts project hundreds of millions of devices in use by 2016.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Nanostructured Carbon Composites
Emissions from the world’s rapidly-growing fleet of vehicles are an environmental concern, and raising the operating efficiency of transport is a promising way to reduce its overall impact. New techniques to nanostructure carbon fibres for novel composites are showing the potential in vehicle manufacture to reduce the weight of cars by 10% or more. Lighter cars need less fuel to operate, increasing the efficiency of moving people and goods and reducing greenhouse gas emissions. However, efficiency is only one concern – another of equal importance is improving passenger safety. To increase the strength and toughness of new composites, the interface between carbon fibres and the surrounding polymer matrix is engineered at the nanoscale to improve anchoring – using carbon nanotubes, for example. In the event of an accident, these surfaces are designed to absorb impact without tearing, distributing the force and protecting passengers inside the vehicle. A third challenge, which may now be closer to a solution, is that of recycling carbon fibre composites – something which has held back the widespread deployment of the technology. New techniques involve engineering cleavable “release points” into the material at the interface between the polymer and the fibre so that the bonds can be broken in a controlled fashion and the components that make up the composite can be recovered separately and reused. Taken together, these three elements could have a major impact by bringing forward the potential for manufacturing lightweight, super-safe and recyclable composite vehicles to a mass scale
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Mining Metals from Desalination Brine
As the global population continues to grow and developing countries emerge from poverty, freshwater is at risk of becoming one of the Earth’s most limited natural resources. In addition to water for drinking, sanitation and industry in human settlements, a significant proportion of the world’s agricultural production comes from irrigated crops grown in arid areas. With rivers like the Colorado, the Murray-Darling and the Yellow River no longer reaching the sea for long periods of time, the attraction of desalinating seawater as a new source of freshwater can only increase. Desalination has serious drawbacks, however. In addition to high energy use (a topic covered in last year’s Top 10 Emerging Technologies), the process produces a reject-concentrated brine, which can have a serious impact on marine life when returned to the sea. Perhaps the most promising approach to solving this problem is to see the brine from desalination not as waste, but as a resource to be harvested for valuable materials. These include lithium, magnesium and uranium, as well as the more common sodium, calcium and potassium elements. Lithium and magnesium are valuable for use in high-performance batteries and lightweight alloys, for example, while rare earth elements used in electric motors and wind turbines – where potential shortages are already a strategic concern – may also be recovered. New processes using catalyst-assisted chemistry raise the possibility of extracting these metals from reject desalination brine at a cost that may eventually become competitive with land-based mining of ores or lake deposits. This economic benefit may offset the overall cost of desalination, making it more viable on a large scale, in turn reducing the human pressures on freshwater ecosystems.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Grid-scale Electricity Storage
Electricity cannot be directly stored, so electrical grid managers must constantly ensure that overall demand from consumers is exactly matched by an equal amount of power fed into the grid by generating stations. Because the chemical energy in coal and gas can be stored in relatively large quantities, conventional fossil-fuelled power stations offer dispatchable energy available on demand, making grid management a relatively simple task. However, fossil fuels also release greenhouse gases, causing climate change – and many countries now aim to replace carbon-based generators with a clean energy mix of renewable, nuclear or other non-fossil sources. Clean energy sources, in particular wind and solar, can be highly intermittent; instead of producing electricity when consumers and grid managers want it, they generate uncontrollable quantities only when favourable weather conditions allow. A scaled-up nuclear sector might also present challenges due to its preferred operation as always-on baseload. Hence, the development of grid-scale electricity storage options has long been a “holy grail” for clean energy systems. To date, only pumped storage hydropower can claim a significant role, but it is expensive, environmentally challenging and totally dependent on favourable geography. There are signs that a range of new technologies is getting closer to cracking this challenge. Some, such as flow batteries may, in the future, be able to store liquid chemical energy in large quantities analogous to the storage of coal and gas. Various solid battery options are also competing to store electricity in sufficiently energy-dense and cheaply available materials. Newly invented graphene supercapacitors offer the possibility of extremely rapid charging and discharging over many tens of thousands of cycles. Other options use kinetic potential energy such as large flywheels or the underground storage of compressed air. A more novel option being explored at medium scale in Germany is CO2 methanation via hydrogen electrolysis, where surplus electricity is used to split water into hydrogen and oxygen, with the hydrogen later being reacted with waste carbon dioxide to form methane for later combustion – if necessary, to generate electricity. While the round-trip efficiency of this and other options may be relatively low, clearly storage potential will have high economic value in the future. It is too early to pick a winner, but it appears that the pace of technological development in this field is moving more rapidly than ever, in our assessment, bringing a fundamental breakthrough more likely in the near term.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Nanowire Lithium-ion Batteries
As stores of electrical charge, batteries are critically important in many aspects of modern life. Lithium-ion batteries, which offer good energy density (energy per weight or volume) are routinely packed into mobile phones, laptops and electric cars, to name just a few common uses. However, to increase the range of electric cars to match that of petrol-powered competitors – not to mention the battery lifetime between charges of mobile phones and laptops – battery energy density needs to be improved dramatically. Batteries are typically composed of two electrodes, a positive terminal known as a cathode, and a negative terminal known as an anode, with an electrolyte in between. This electrolyte allows ions to move between the electrodes to produce current. In lithium-ion batteries, the anode is composed of graphite, which is relatively cheap and durable. However, researchers have begun to experiment with silicon anodes, which would offer much greater power capacity. One engineering challenge is that silicon anodes tend to suffer structural failure from swelling and shrinking during charge-discharge cycle. Over the last year, researchers have developed possible solutions that involve the creation of silicon nanowires or nanoparticles, which seem to solve the problems associated with silicon’s volume expansion when it reacts with lithium. The larger surface area associated with nanoparticles and nanowires further increases the battery’s power density, allowing for fast charging and current delivery. Able to fully charge more quickly, and produce 30%-40% more electricity than today’s lithium-ion batteries, this next generation of batteries could help transform the electric car market and allow the storage of solar electricity at the household scale. Initially, silicon-anode batteries are expected to begin to ship in smartphones within the next two years.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)