Trends Identified
Manufacturing may be more local and efficient
When it comes to light manufacturing, synthetic biology and 3D printing have similar characteristics: they both support the local production of a “product” from a digital file using simple low-cost equipment; they enable very low-cost replica on of a small or large quantity; and they allow the user to easily experiment and customize the product. Currently, 3D printing uses close to 30 different materials with growing complexity (e.g., Boeing prints 22 000 different airline parts). Soon this will include clothes, many consumer goods and electronic gadgets, to name a few. Synthetic biology will likely produce liquids, solids and industrial chemicals for pharmaceuticals, medicine, paper
and building supplies and other goods yet to be imagined, in small or large quantities, and may produce raw materials on-site for local manufacturing plants.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Low-cost robots may level the playing field
Sensors, artificial intelligence and robots will reshape heavy manufacturing and are likely to have a leveling impact across both developed and developing economies. While developing countries may lose their low-cost labour advantage as advanced economies deploy an affordable AI-enabled robotic workforce, both economies will be able to deploy AI and increase the productivity of their low-skilled workers.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
New materials with new properties may stimulate innovation
New bio and nanomaterials are likely to launch a new era of product and process innovation. Their new properties are changing the size, at both ends of the scale, at which designers, engineers and architects can dream. Nanocomposites and other new materials – some as strong as steel and others so and supple – will improve the performance of manufactured products and support a wider range of 3D printed objects. Embedded sensors and digital tags within materials will enable tracking along the supply chain, offering improved transparency and monitoring of product life cycles.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Industrial processes become more environmental
Growing pressure on renewable and non-renewable resources, as well as public concern about the safety of new nano and biomaterials, will put greater emphasis on building “closed-loop systems.” In these systems, waste from one industry becomes the feedstock for another. Products may be designed to be safe and fully recyclable. Synthetic biology will enable industrial processes to mimic nature (e.g., enzymes can accelerate the decomposition of industrial waste into safe by-products and have commercial value), and nanotechnology will produce new goods with new properties at a smaller scale that may use far less resources. (For example, soon, a smart phone will contain 20 or 30 tiny nanosensors that collect biometric data.)
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
New kinds of services
The Canadian economy is dominated by the services sector, employing 78% of Canada’s workforce in 2012. Emerging technologies are likely to increase productivity, but may displace labour in both high- and low-skilled service jobs. Whole new employment and service opportunities are likely to emerge in areas such as professional and business-to-business services; care for aging populations; health care; culture and recreation; intangible products (concepts, designs, information, advice); and international trade-in-services.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Services increasingly customized to the individual
Sensors and artificial intelligence (AI) in print media, signs, and devices will mean that services can be increasingly tailored to the users’ interests by sensing their demographic information and recalling prior choices. Public spaces will be more interactive and able to offer pertinent information without the user navigating tedious menus. Repeat business is ensured by remembering past preferences. AI could remind a hairstylist how a person likes their hair cut, or what toppings they prefer at the burger joint. Means of gathering instant feedback around new experiences will also be useful; at the dentist, a brain-computer interface could verify the patient’s level of comfort. AI tutors could offer students personal attention and “gamify” learning goals (apply game techniques) to encourage progress.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Virtual, augmented and remote services will change the geography of services
It is likely that services typically conducted face-to-face will be increasingly performed online. Visits to a doctor or lawyer will likely start with a virtual pre-screening interview; the visit itself may also be virtual. In schools, each student may be equipped with a personal AI teacher who monitors their progress and advancement through content modules, with human teachers playing an oversight role. Augmented reality devices may enable travelers and tourists to explore, relax or do business without leaving home. “Telepresencing” (the sense of being in multiple locations at once) will allow users to choose the best service provider for their needs from anywhere in the world rather than the best one in their area.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Sustainable resource management and harvesting
The new technologies – particularly sensors, data analytics, AI, drones, robots and synthetic biology – could usher in a new era for the sustainable management and harvesting of forest and fish resources. Together, these tools could allow resource managers and government overseers to monitor ecosystem and resource health, to develop more ecological planting and harvesting strategies, and to quickly identify and implement targeted interventions. Being able to see the whole system would improve planning, investment and public accountability.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Robots for traditional and undersea resource acquisition
Drones and robots will play a growing role in prospecting and extracting in both traditional and undersea mining, particularly in situations that are remote, difficult or dangerous. The operators of these robots may live in urban locations with their families and never set foot on-site. Operators could live in different me zones around the world, enabling round-the-clock production without major disruptions to their personal and family lives.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Bioproduction of raw materials
Synthetic biology uses genetically engineered organisms to manufacture a growing range of materials such as bioplastics, biofuels, biorubber, biosteel, spider silk and industrial chemicals. Industries that may be disrupted include pulp and paper, building materials, chemical manufacturing, pharmaceuticals, agriculture and fossil fuel extraction. Secondary- processing companies could bypass the primary producers and develop self-sufficient factories that grow raw materials to their exact specifications using bioreactors and locally available feedstock. As this field develops, it may be hard for traditional producers to remain competitive.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada