Trends Identified

Harnessing hyperscale: Hardware is back (and never really went away)
Eclipsed by more than a decade of innovation in software, the hardware world is again a hotbed of new development as demand soars for bigger, faster, lower-cost data centers. Does your IT organization understand the new developments allowing companies to realize the benefits of “hyperscale” systems? In this new world, hardware matters more than ever in transforming enterprises into digital businesses with access to unlimited computing power that can be turned on and off as needed.
2014
Accenture Technology Vision 2014
Accenture
The business of applications: Software as a core competency in a digital world
The way we build software is changing. Mimicking the shift in the consumer world, organizations are rapidly moving from enterprise applications to apps. Yes, there will always be big, complex enterprise software systems to support large organizations, and it will still be necessary for IT developers to keep customizing those systems, providing updates, patches, and more. But now, as large enterprises push for greater IT agility, there is a sharp shift toward simpler, more modular, and more custom apps. The implications are significant for IT leaders and business leaders alike: they must soon decide not just who plays what application development role in their new digital organizations but also how to transform the nature of application development itself.
2014
Accenture Technology Vision 2014
Accenture
Architecting resilience: “Built to survive failure” becomes the mantra of the nonstop business
In the digital era, businesses must support wide-ranging demands for nonstop processes, services, and systems. This has particular resonance in the office of the CIO, where the need for “always-on” IT infrastructure, security, and resilient practices can mean the difference between business as usual and erosion of brand value. The upshot: IT must adopt a new mindset to ensure that systems are dynamic, accessible, and continuous—not just designed to spec but designed for resilience under failure and attack.
2014
Accenture Technology Vision 2014
Accenture
Body-adapted Wearable Electronics
From Google Glass to the Fitbit wristband, wearable technology has generated significant attention over the past year, with most existing devices helping people to better understand their personal health and fitness by monitoring exercise, heart rate, sleep patterns, and so on. The sector is shifting beyond external wearables like wristbands or clip-on devices to “body-adapted” electronics that further push the ever-shifting boundary between humans and technology.The new generation of wearables is designed to adapt to the human body’s shape at the place of deployment. These wearables are typically tiny, packed with a wide range of sensors and a feedback system, and camouflaged to make their use less intrusive and more socially acceptable. These virtually invisible devices include earbuds that monitor heart rate, sensors worn under clothes to track posture, a temporary tattoo that tracks health vitals and haptic shoe soles that communicate GPS directions through vibration alerts felt by the feet. The applications are many and varied: haptic shoes are currently proposed for helping blind people navigate, while Google Glass has already been worn by oncologists to assist in surgery via medical records and other visual information accessed by voice commands.Technology analysts consider that success factors for wearable products include device size, non-invasiveness, and the ability to measure multiple parameters and provide real-time feedback that improves user behaviour. However, increased uptake also depends on social acceptability as regards privacy. For example, concerns have been raised about wearable devices that use cameras for facial recognition and memory assistance. Assuming these challenges can be managed, analysts project hundreds of millions of devices in use by 2016.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Nanostructured Carbon Composites
Emissions from the world’s rapidly-growing fleet of vehicles are an environmental concern, and raising the operating efficiency of transport is a promising way to reduce its overall impact. New techniques to nanostructure carbon fibres for novel composites are showing the potential in vehicle manufacture to reduce the weight of cars by 10% or more. Lighter cars need less fuel to operate, increasing the efficiency of moving people and goods and reducing greenhouse gas emissions. However, efficiency is only one concern – another of equal importance is improving passenger safety. To increase the strength and toughness of new composites, the interface between carbon fibres and the surrounding polymer matrix is engineered at the nanoscale to improve anchoring – using carbon nanotubes, for example. In the event of an accident, these surfaces are designed to absorb impact without tearing, distributing the force and protecting passengers inside the vehicle. A third challenge, which may now be closer to a solution, is that of recycling carbon fibre composites – something which has held back the widespread deployment of the technology. New techniques involve engineering cleavable “release points” into the material at the interface between the polymer and the fibre so that the bonds can be broken in a controlled fashion and the components that make up the composite can be recovered separately and reused. Taken together, these three elements could have a major impact by bringing forward the potential for manufacturing lightweight, super-safe and recyclable composite vehicles to a mass scale
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Mining Metals from Desalination Brine
As the global population continues to grow and developing countries emerge from poverty, freshwater is at risk of becoming one of the Earth’s most limited natural resources. In addition to water for drinking, sanitation and industry in human settlements, a significant proportion of the world’s agricultural production comes from irrigated crops grown in arid areas. With rivers like the Colorado, the Murray-Darling and the Yellow River no longer reaching the sea for long periods of time, the attraction of desalinating seawater as a new source of freshwater can only increase. Desalination has serious drawbacks, however. In addition to high energy use (a topic covered in last year’s Top 10 Emerging Technologies), the process produces a reject-concentrated brine, which can have a serious impact on marine life when returned to the sea. Perhaps the most promising approach to solving this problem is to see the brine from desalination not as waste, but as a resource to be harvested for valuable materials. These include lithium, magnesium and uranium, as well as the more common sodium, calcium and potassium elements. Lithium and magnesium are valuable for use in high-performance batteries and lightweight alloys, for example, while rare earth elements used in electric motors and wind turbines – where potential shortages are already a strategic concern – may also be recovered. New processes using catalyst-assisted chemistry raise the possibility of extracting these metals from reject desalination brine at a cost that may eventually become competitive with land-based mining of ores or lake deposits. This economic benefit may offset the overall cost of desalination, making it more viable on a large scale, in turn reducing the human pressures on freshwater ecosystems.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Grid-scale Electricity Storage
Electricity cannot be directly stored, so electrical grid managers must constantly ensure that overall demand from consumers is exactly matched by an equal amount of power fed into the grid by generating stations. Because the chemical energy in coal and gas can be stored in relatively large quantities, conventional fossil-fuelled power stations offer dispatchable energy available on demand, making grid management a relatively simple task. However, fossil fuels also release greenhouse gases, causing climate change – and many countries now aim to replace carbon-based generators with a clean energy mix of renewable, nuclear or other non-fossil sources. Clean energy sources, in particular wind and solar, can be highly intermittent; instead of producing electricity when consumers and grid managers want it, they generate uncontrollable quantities only when favourable weather conditions allow. A scaled-up nuclear sector might also present challenges due to its preferred operation as always-on baseload. Hence, the development of grid-scale electricity storage options has long been a “holy grail” for clean energy systems. To date, only pumped storage hydropower can claim a significant role, but it is expensive, environmentally challenging and totally dependent on favourable geography. There are signs that a range of new technologies is getting closer to cracking this challenge. Some, such as flow batteries may, in the future, be able to store liquid chemical energy in large quantities analogous to the storage of coal and gas. Various solid battery options are also competing to store electricity in sufficiently energy-dense and cheaply available materials. Newly invented graphene supercapacitors offer the possibility of extremely rapid charging and discharging over many tens of thousands of cycles. Other options use kinetic potential energy such as large flywheels or the underground storage of compressed air. A more novel option being explored at medium scale in Germany is CO2 methanation via hydrogen electrolysis, where surplus electricity is used to split water into hydrogen and oxygen, with the hydrogen later being reacted with waste carbon dioxide to form methane for later combustion – if necessary, to generate electricity. While the round-trip efficiency of this and other options may be relatively low, clearly storage potential will have high economic value in the future. It is too early to pick a winner, but it appears that the pace of technological development in this field is moving more rapidly than ever, in our assessment, bringing a fundamental breakthrough more likely in the near term.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Nanowire Lithium-ion Batteries
As stores of electrical charge, batteries are critically important in many aspects of modern life. Lithium-ion batteries, which offer good energy density (energy per weight or volume) are routinely packed into mobile phones, laptops and electric cars, to name just a few common uses. However, to increase the range of electric cars to match that of petrol-powered competitors – not to mention the battery lifetime between charges of mobile phones and laptops – battery energy density needs to be improved dramatically. Batteries are typically composed of two electrodes, a positive terminal known as a cathode, and a negative terminal known as an anode, with an electrolyte in between. This electrolyte allows ions to move between the electrodes to produce current. In lithium-ion batteries, the anode is composed of graphite, which is relatively cheap and durable. However, researchers have begun to experiment with silicon anodes, which would offer much greater power capacity. One engineering challenge is that silicon anodes tend to suffer structural failure from swelling and shrinking during charge-discharge cycle. Over the last year, researchers have developed possible solutions that involve the creation of silicon nanowires or nanoparticles, which seem to solve the problems associated with silicon’s volume expansion when it reacts with lithium. The larger surface area associated with nanoparticles and nanowires further increases the battery’s power density, allowing for fast charging and current delivery. Able to fully charge more quickly, and produce 30%-40% more electricity than today’s lithium-ion batteries, this next generation of batteries could help transform the electric car market and allow the storage of solar electricity at the household scale. Initially, silicon-anode batteries are expected to begin to ship in smartphones within the next two years.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Screenless Display
One of the more frustrating aspects of modern communications technology is that, as devices have miniaturized, they have become more difficult to interact with – no one would type out a novel on a smartphone, for example. The lack of space on screen-based displays provides a clear opportunity for screenless displays to fill the gap. Full-sized keyboards can already be projected onto a surface for users to interact with, without concern over whether it will fit into their pocket. Perhaps evoking memories of the early Star Wars films, holographic images can now be generated in three dimensions; in 2013, MIT’s Media Lab reported a prototype inexpensive holographic colour video display with the resolution of a standard TV. Screenless display may also be achieved by projecting images directly onto a person’s retina, not only avoiding the need for weighty hardware, but also promising to safeguard privacy by allowing people to interact with computers without others sharing the same view. By January 2014, one start-up company had already raised a substantial sum via Kickstarter with the aim of commercializing a personal gaming and cinema device using retinal display. In the longer term, technology may allow synaptic interfaces that bypass the eye altogether, transmitting “visual” information directly to the brain. This field saw rapid progress in 2013 and appears set for imminent breakthroughs of scalable deployment of screenless display. Various companies have made significant breakthroughs in the field, including virtual reality headsets, bionic contact lenses, the development of mobile phones for the elderly and partially blind people, and hologram-like videos without the need for moving parts or glasses.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)
Human Microbiome Therapeutics
The human body is perhaps more properly described as an ecosystem than as a single organism: microbial cells typically outnumber human cells by 10 to one. This human microbiome has been the subject of intensifying research in the past few years, with the Human Microbiome Project in 2012 reporting results generated from 80 collaborating scientific institutions. They found that more than 10,000 microbial species occupy the human ecosystem, comprising trillions of cells and making up 1%-3% of the body’s mass. Through advanced DNA sequencing, bioinformatics and culturing technologies, the diverse microbe species that cohabitate with the human body are being identified and characterized, with differences in their abundance correlated with disease and health. It is increasingly understood that this plethora of microbes plays an important role in our survival: bacteria in the gut, for example, allow humans to digest foods and absorb important nutrients that their bodies would otherwise not be able to access. On the other hand, pathogens that are ubiquitous in humans can sometimes turn virulent and cause sickness or even death. Attention is being focused on the gut microbiome and its role in diseases ranging from infections to obesity, diabetes and inflammatory bowel disease. It is increasingly understood that antibiotic treatments that destroy gut flora can result in complications such as Clostridium difficile infections, which can in rare cases lead to life-threatening complications. On the other hand, a new generation of therapeutics comprising a subset of microbes found in healthy gut are under clinical development with a view to improving medical treatments. Advances in human microbiome technologies clearly represent an unprecedented way to develop new treatments for serious diseases and to improve general healthcare outcomes in our species.
2014
Top 10 emerging technologies for 2014
World Economic Forum (WEF)