Trends Identified
Nanomaterials
Nano-scale systems often exhibit properties that improve upon or are much different from their human-scale varieties; for example, silver exhibits anti-bacterial properties at the nano-scale that are absent at the macro-scale. As scientists work with materials close to the molecular level, they can produce new and useful materials, such as nanocellulose and nanocarbon. Both have impressive performance characteristics, being respectively 10 and 50 times stronger than steel for their weight. Nanocoatings provide new ways to make structures self-cleaning, more durable and perhaps even able to receive, store and respond to stimuli. Other nanomaterials are excellent catalysts for making chemistry greener and cheaper. Over the next 15 years, nanomaterials will change the types of things we build and how we build them.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Nanodevices
Nanodevices are machines made of a number of molecular parts that do useful work (such as moving
or changing electrically, chemically or optically) in response to specific inputs. Examples include nanoelectromechanical systems (NEMS), nanosensors, nanocomputers and nanorobots. They have surprising energy-efficiency, power density, sensitivity and optical efficiency. Their small size also reduces production costs and increases the number of devices running in parallel, increasing speed. They are likely to be of most use in medical devices, although their small size may lead them to be treated as “smart” drugs. They are also likely to be components of human-scale devices to increase the performance or provide new abilities.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Nanosensors
Nanosensors, in particular, are set to have a huge impact. They may open the door to the development
of inexpensive, portable devices that can rapidly detect, identify and quantify biological and chemical substances. These may take the form of specific sensing devices, or may simply be features integrated into the next few generations of mobile phones. As such, nanosensors are expected to lead to revolutionary applications, including early disease detection, real-time health monitoring, the early and accurate detection of environmental pollutants and contaminants, and even biological or chemical weapons.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Nanotechnology for solar
Solar cells, cheaper now than they have ever been, are poised for significant improvement due largely to nanotechnology. High-efficiency multi-junction solar cells, infrared energy capture and wavelength-splitting designs may increase high-efficiency solar cell performance by 200-300%. Roll-to-roll printing of solar cells on plastic using photosynthetic inks will allow solar panels to be manufactured at significantly lower costs than even today’s low prices.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Nanotechnology for batteries
Batteries will improve through the use of enhanced nanomaterials and economies of scale. We expect higher capacities, much faster recharging, and greater longevity and significantly lower prices. Better and cheaper batteries could be the cornerstone technology to displace the internal combustion engine for passenger vehicles and support the transition to renewables in homes and businesses by addressing the intermittency of renewable energy sources like wind and solar. Using these technologies, buildings may become energy independent and solar-powered fueling stations could support the growing electric vehicle market.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Neurostimulation
Neurostimulation covers those technologies that stimulate, or block, certain parts of the nervous system, particularly within the brain. The technology is used to treat various severe neurological disorders, such as Parkinson’s disease, depression and insomnia. Neurostimula on can also be used to augment human cognitive function. Neurostimulation has historically been performed through both invasive (surgery) and non-invasive means (taking pills, electrical stimulation). Wearable headsets are now being marketed that work by adding a slight voltage to neurons, letting them fire more easily. These devices use transcranial direct current stimula on (tDCS), which has the potential to enhance language, learning, attention, problem solving, coordination and memory functions; help combat insomnia, anxiety, and depression; and manage pain. The future use of both “smart drugs” and tDCS could allow some people to gain a competitive advantage over others.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Brain-computer interface
A brain-computer interface (BCI) is a direct communication pathway that connects nerve signals in the brain to an external computer. BCIs can be invasive (implanted within or just above the brain), or non-invasive (on the scalp surface). BCIs are used therapeutically to assist, augment or repair human cognitive, sensory or motor functions. Today, it requires training and practice to make BCIs useful and reliable. Research, artificial intelligence and more data, however, will improve this significantly. Potential near-term applications include the use of BCIs to detect lapses in attention among occupations requiring vigilance, and as a communication tool for those who have lost motor skills but retained cognition. In the future, this technology could be used to improve cognitive functions, to better understand human preferences, and to augment human capabilites such as coordination and response times. It may even be used to develop senses new to humans, such as the ability to sense magnetic fields, infrared light or radio waves.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Artificial Intelligence
Artificial intelligence (AI) involves giving machines such traits as reasoning, planning, learning, communication and perception, and the ability to move and manipulate objects. AI is in wide use today: in Apple’s Siri for voice recognition, Google’s text and image search functions, Facebook’s facial recognition capability, NASA’s rovers, and algorithmic stock trading. Currently, however, AI is task-specific. The
next step is for researchers and computer scientists to advance AI so that computers can learn general knowledge that can be used to enable them to work in new situations, or respond better to the user’s contexts and mood. AI innovations are so ware-based, and are being incorporated into personal tools (e.g., smart phones, Google glasses) as new features, often at near-zero incremental cost. AI will make it possible to automate many tasks, greatly improving personal efficiency and productivity.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Robotics
Robotics is the branch of technology that deals with the design, construction, opera on and application
of robots and related computer and control systems. Robots help with or take the place of humans
in dangerous environments or manufacturing processes, and/or resemble humans in appearance, behaviour or cognition. Increasingly, robots are designed to act in roles complementary to humans.
Today, experimental robots can inventory stock, move loads, pick berries, do housework, perform elder care, sense remotely and create a virtual presence. As their AI improves, they will get smarter and more capable. Robot hardware is improving quickly; the challenge is the so ware – the intelligence behind the machine that allows it to function in a specific manner. Task-specific robots could do tasks as diverse as surgery, cooking and driving. Businesses will continue to be early adopters of robot technology, with home use following as prices decline and features become more competitive.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Manufacturing may be more local and efficient
When it comes to light manufacturing, synthetic biology and 3D printing have similar characteristics: they both support the local production of a “product” from a digital file using simple low-cost equipment; they enable very low-cost replica on of a small or large quantity; and they allow the user to easily experiment and customize the product. Currently, 3D printing uses close to 30 different materials with growing complexity (e.g., Boeing prints 22 000 different airline parts). Soon this will include clothes, many consumer goods and electronic gadgets, to name a few. Synthetic biology will likely produce liquids, solids and industrial chemicals for pharmaceuticals, medicine, paper
and building supplies and other goods yet to be imagined, in small or large quantities, and may produce raw materials on-site for local manufacturing plants.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada