Trends Identified

Electroceuticals - Nerve-stimulating therapies could soon replace drugs for many chronic conditions
Electroceuticals—devices that treat ailments with electrical impulses—have a long history in medicine. Think pacemakers for the heart, cochlear implants for the ears and deep-brain stimulation for Parkinson’s disease. One of these approaches is poised to become more versatile, dramatically improving care for a host of conditions. It involves delivering signals to the vagus nerve, which sends impulses from the brain stem to most organs and back again. New uses of vagal nerve stimulation (VNS) have become possible in part because of research by Kevin Tracey of the Feinstein Institute for Medical Research and others showing that the vagus nerve emits chemicals that help to regulate the immune system. The release of a specific neurotransmitter in the spleen, for instance, quiets immune cells involved in inflammation throughout the body. These findings indicated that VNS might be beneficial for disorders beyond ones marked by disturbed electrical signaling, such as autoimmune and inflammatory conditions. It could be a boon for patients with those conditions because existing drugs often fail or cause serious side effects. VNS may be easier to tolerate because it acts on a specific nerve, whereas drugs generally travel throughout the body, potentially disrupting tissues beyond those targeted for treatment.
2018
Top 10 Emerging Technologies of 2018
Scientific American
Gene Drive - A genetic tool that can alter—and potentially eliminate—entire species has taken a dramatic leap forward
Research into a genetic engineering technology that can permanently change the traits of a population or even an entire species is progressing rapidly. The approach uses gene drives—genetic elements that pass from parents to unusually high numbers of their offspring, thereby spreading through populations rather quickly. Gene drives occur naturally but can also be engineered, and doing so could be a boon to humanity in many ways. The technology has the potential to stop insects from transmitting malaria and other terrible infections, enhance crop yields by altering pests that attack plants, render corals resistant to environmental stress, and keep invasive plants and animals from destroying ecosystems. Yet investigators are deeply aware that altering or even eliminating a species could have profound consequences. In response, they are developing rules to govern the transfer of gene drives from the laboratory into future field tests and wider use.
2018
Top 10 Emerging Technologies of 2018
Scientific American
Plasmonic Materials - Light-controlled nanomaterials are revolutionizing sensor technology
Writing in Scientific American in 2007, Harry A. Atwater of the California Institute of Technology predicted that a technology he called “plasmonics” could eventually lead to an array of applications, from highly sensitive biological detectors to invisibility cloaks. A decade later various plasmonic technologies are already a commercial reality, and others are transitioning from the laboratory to the market. These technologies all rely on controlling the interaction between an electromagnetic field and the free electrons in a metal (typically gold or silver) that account for the metal’s conductivity and optical properties. Free electrons on a metal’s surface oscillate collectively when hit by light, forming what is known as surface plasmon. When a piece of metal is large, the free electrons reflect the light that hits them, giving the material its shine. But when a metal measures just a few nanometers, its free electrons are confined in a very small space, limiting the frequency at which they can vibrate. The specific frequency of the oscillation depends on the size of the metal nanoparticle. In a phenomenon called resonance, the plasmon absorbs only the fraction of incoming light that oscillates at the same frequency as the plasmon itself does (reflecting the rest of the light). This surface plasmon resonance can be exploited to create nanoantennas, efficient solar cells and other useful devices.
2018
Top 10 Emerging Technologies of 2018
Scientific American
Algorithms for Quantum Computers - Developers are perfecting programs meant to run on quantum computers
Quantum computers exploit quantum mechanics to perform calculations. Their basic unit of computation, the qubit, is analogous to the standard bit (zero or one), but it is in a quantum superposition between two computational quantum states: it can be a zero and a one at the same time. That property, along with another uniquely quantum feature known as entanglement, can enable quantum computers to resolve certain classes of problems more efficiently than any conventional computer can. This technology, while exciting, is notoriously finicky. A process called decoherence, for example, can disrupt its function. Investigators have determined that stringently controlled quantum computers that have a few thousand qubits could be made to withstand decoherence through a technique known as quantum error correction. But the largest quantum computers that laboratories have demonstrated so far—the most notable examples are from IBM, Google, Rigetti Computing and IonQ—contain just tens of quantum bits. These versions, which John Preskill of the California Institute of Technology named noisy intermediatescale quantum (NISQ) computers, cannot perform error correction yet. Nevertheless, a burst of research on algorithms written specifically for NISQs might enable these devices to perform certain calculations more efficiently than classic computers.
2018
Top 10 Emerging Technologies of 2018
Scientific American
Augmented Reality Everywhere - Coming soon: the world overlaid with data
Virtual reality (VR) immerses you in a fictional, isolated universe. Augmented reality (AR), in contrast, overlays computer-generated information on the real world in real time. As you look at or wear a device equipped with AR software and a camera—be it a smartphone, a tablet, a headset or smart glasses—the program analyzes the incoming video stream, downloads extensive information about the scene and superposes on it relevant data, images or animations, often in 3-D.
2018
Top 10 Emerging Technologies of 2018
Scientific American
Advanced Diagnostics for Personalized Medicine - A new generation of tools could help end one-size-fits-all therapeutics.
For most of the 20th century all women with breast cancer received similar treatment. Therapy has since become more individualized: breast cancers are now divided into subtypes and treated accordingly. Many women whose tumors produce estrogen receptors, for instance, may receive drugs that specifically target those receptors, along with standard postsurgery chemotherapy. This year researchers took a step closer to even more personalized treatment. They identified a significant fraction of patients whose tumors possess characteristics that indicate they can safely forgo chemo—and avoid its often serious side effects.
2018
Top 10 Emerging Technologies of 2018
Scientific American
Nanosensors and the Internet of Nanothings
The Internet of Things (IoT), built from inexpensive microsensors and microprocessors paired with tiny power supplies and wireless antennas, is rapidly expanding the online universe from computers and mobile gadgets to ordinary pieces of the physical world: thermostats, cars, door locks, even pet trackers. New IoT devices are announced almost daily, and analysts expected to up to 30 billion of them to be online by 2020. The explosion of connected items, especially those monitored and controlled by artificial intelligence systems, can endow ordinary things with amazing capabilities—a house that unlocks the front door when it recognizes its owner arriving home from work, for example, or an implanted heart monitor that calls the doctor if the organ shows signs of failing. But the real Big Bang in the online universe may lie just ahead. Scientists have started shrinking sensors from millimeters or microns in size to the nanometer scale, small enough to circulate within living bodies and to mix directly into construction materials. This is a crucial first step toward an Internet of Nano Things (IoNT) that could take medicine, energy efficiency, and many other sectors to a whole new dimension. Some of the most advanced nanosensors to date have been crafted by using the tools of synthetic biology to modify single-celled organisms, such as bacteria. The goal here is to fashion simple biocomputers that use DNA and proteins to recognize specific chemical targets, store a few bits of information, and then report their status by changing color or emitting some other easily detectable signal. Synlogic, a start-up in Cambridge, Mass., is working to commercialize computationally enabled strains of probiotic bacteria to treat rare metabolic disorders. Beyond medicine, such cellular nanosensors could find many uses in agriculture and drug manufacturing. Many nanosensors have also been made from non-biological materials, such as carbon nanotubes, that can both sense and signal, acting as wireless nanoantennas. Because they are so small, nanosensors can collect information from millions of different points. External devices can then integrate the data to generate incredibly detailed maps showing the slightest changes in light, vibration, electrical currents, magnetic fields, chemical concentrations and other environmental conditions. The transition from smart nanosensors to the IoNT seems inevitable, but big challenges will have to be met. One technical hurdle is to integrate all the components needed for a self-powered nanodevice to detect a change and transmit a signal to the web. Other obstacles include thorny issues of privacy and safety. Any nanodevices introduced into the body, deliberately or inadvertently, could be toxic or provoke immune reactions. The technology could also enable unwelcome surveillance. Initial applications might be able to avoid the most vexing issues by embedding nanosensors in simpler, less risky organisms such as plants and non-infectious microorganisms used in industrial processing. When it arrives, the IoNT could provide much more detailed, inexpensive, and up-to-date pictures of our cities, homes, factories—even our bodies. Today traffic lights, wearables or surveillance cameras are getting connected to the Internet. Next up: billions of nanosensors harvesting huge amounts of real-time information and beaming it up to the cloud.
2016
Top 10 Emerging Technologies of 2016
World Economic Forum (WEF)
Next Generation Batteries
Solar and wind power capacity have been growing at double-digit rates, but the sun sets, and the wind can be capricious. Although every year wind farms get larger and solar cells get more efficient, thanks to advances in materials such as perovskites, these renewable sources of energy still satisfy less than five percent of global electricity demand. In many places, renewables are relegated to niche roles because of the lack of an affordable, reliable technology to store the excess energy that they make when conditions are ideal and to release the power onto the grid as demand picks up. Better batteries could solve this problem, enabling emissions-free renewables to grow even faster—and making it easier to bring reliable electricity to the 1.2 billion people who currently live without it. Within the past few years, new kinds of batteries have been demonstrated that deliver high enough capacity to serve whole factories, towns, or even “mini-grids” connecting isolated rural communities. These batteries are based on sodium, aluminium or zinc. They avoid the heavy metals and caustic chemicals used in older lead-acid battery chemistries. And they are more affordable, more scalable, and safer than the lithium batteries currently used in advanced electronics and electric cars. The newer technology is much better suited to support transmissions systems that rely heavily on solar or wind power. Last October, for example, Fluidic Energy announced an agreement with the government of Indonesia to deploy 35 megawatts of solar panel capacity to 500 remote villages, electrifying the homes of 1.7 million people. The system will use Fluidic’s zinc-air batteries to store up to 250 megawatt-hours of energy in order to provide reliable electricity regardless of the weather. In April, the company inked a similar deal with the government of Madagascar to put 100 remote villages there on a solar-powered mini-grid backed by zinc-air batteries. For people who currently have no access to the grid—no light to work by at night, no Internet to mine for information, no power to do the washing or to irrigate the crops—the combination of renewable generation and grid-scale batteries is utterly transformative, a potent antidote for poverty. But better batteries also hold enormous promise for the rich world as it struggles to meet the formidable challenge of removing most carbon emissions from electricity generation within the next few decades—and doing so at the same time that demand for electricity is growing. The ideal battery is not yet in hand. The new technologies have plenty of room for further improvement. But until recently, advances in grid-scale batteries had been few and far between. So it is heartening to see the pace of progress quickening.
2016
Top 10 Emerging Technologies of 2016
World Economic Forum (WEF)
The Blockchain
Blockchain–the technology behind the bitcoin digital currency–is a decentralized public ledger of transactions that no one person or company owns or controls. Instead, every user can access the entire blockchain, and every transfer of funds from one account to another is recorded in a secure and verifiable form by using mathematical techniques borrowed from cryptography. With copies of the blockchain scattered all over the planet, it is considered to be effectively tamper-proof. The challenges that bitcoin poses to law enforcement and international currency controls have been widely discussed. But the blockchain ledger has uses far beyond simple monetary transactions. Like the Internet, the blockchain is an open, global infrastructure upon which other technologies and applications can be built. And like the Internet, it allows people to bypass traditional intermediaries in their dealings with each other, thereby lowering or even eliminating transaction costs. By using the blockchain,individuals can exchange money or purchase insurance securely without a bank account, even across national borders—a feature that could be transformative for the two billion people in the world currently underserved by financial institutions. Blockchain technology lets strangers record simple, enforceable contracts without a lawyer. It makes it possible to sell real estate, event tickets, stocks, and almost any other kind of property or right without a broker. The long-term consequences for professional intermediaries, such as banks, attorneys and brokers, could be profound— and not necessarily in negative ways, because these industries themselves pay huge amounts of transaction fees as a cost of doing business. Analysts at Santander InnoVentures, for example, have estimated that by 2022, blockchain technology could save banks more $20 billion annually in costs. Some 50 big-name banks have announced blockchain initiatives. Investors have poured more than $1 billion in the past year into start-ups formed to exploit the blockchain for a wide range of businesses. Tech giants such as Microsoft, IBM and Google all have blockchain projects underway. Many of these companies are attracted by the potential to use the blockchain to address the privacy and security problems that continue to plague Internet commerce. Because blockchain transactions are recorded using public and private keys—long strings of characters that are unreadable by humans—people can choose to remain anonymous while enabling third parties to verify that they shook, digitally, on an agreement. And not just people: an institution can use the blockchain to store public records and binding promises. Researchers at the University of Cambridge in the U.K., for example, have shown how drug companies could be required to add detailed descriptions of their upcoming clinical drug trials to the blockchain. This would prevent the companies from later moving the goalposts if the trial did not pan out as anticipated, an all-too-common tactic. In London, mayoral candidate George Galloway has proposed putting the city’s annual budget on the blockchain ledger to foster collective auditing by citizens. Perhaps the most encouraging benefit of blockchain technology is the incentive it creates for participants to work honestly where rules apply equally to all. Bitcoin did lead to some famous abuses in trading of contraband, and some nefarious applications of blockchain technology are probably inevitable. The technology doesn’t make theft impossible, just harder. But as an infrastructure that improves society’s public records repository and reinforces representative and participatory legal and governance systems, blockchain technology has the potential to enhance privacy, security and freedom of conveyance of data—which surely ranks up there with life, liberty and the pursuit of happiness.
2016
Top 10 Emerging Technologies of 2016
World Economic Forum (WEF)
Two-Dimensional Materials
New materials can change the world. There is a reason we talk about the Bronze Age and the Iron Age. Concrete, stainless steel, and silicon made the modern era possible. Now a new class of materials, each consisting of a single layer of atoms, are emerging, with far-reaching potential. Known as two-dimensional materials, this class has grown within the past few years to include lattice-like layers of carbon (graphene), boron (borophene) and hexagonal boron nitride (aka white graphene), germanium (germanene), silicon (silicene), phosphorous (phosphorene) and tin (stanene). More 2-D materials have been shown theoretically possible but not yet synthesized, such as graphyne from carbon. Each has exciting properties, and the various 2-D substances can be combined like Lego bricks to build still more new materials. This revolution in monolayers started in 2004 when two scientists famously created 2-D graphene using Scotch tape—probably the first time that Nobel-prize-winning science has been done using a tool found in kindergarten classrooms. Graphene is stronger than steel, harder than diamond, lighter than almost anything, transparent, flexible, and an ultrafast electrical conductor. It is also impervious to most substances except water vapor, which flows freely through its molecular mesh. Initially more costly than gold, graphene has tumbled in price thanks to improved production technologies. Hexagonal boron nitride is now also commercially available and set to follow a similar trajectory. Graphene has become cheap enough to incorporate it in water filters, which could make desalination and waste-water treatment far more affordable. As the cost continues to fall, graphene could be added to road paving mixtures or concrete to clean up urban air—on top of its other strengths, the stuff absorbs carbon monoxide and nitrogen oxides from the atmosphere. Other 2-D materials will probably follow the trajectory that graphene has, simultaneously finding use in high-volume applications as the cost falls, and in high-value products like electronics as technologists work out ways to exploit their unique properties. Graphene, for example, has been used to make flexible sensors that can been sewn into garments—or now actually 3-D printed directly into fabrics using new additive manufacturing techniques. When added to polymers, graphene can yield stronger yet lighter airplane wings and bicycle tires. Hexagonal boron nitride has been combined with graphene and boron nitride to improve lithium-ion batteries and supercapacitors. By packing more energy into smaller volumes, the materials can reduce charging times, extend battery life, and lower weight and waste for everything from smart phones to electric vehicles. Whenever new materials enter the environment, toxicity is always a concern. It’s smart to be cautious and to keep an eye out for problems. Ten years of research into the toxicology of graphene has, so far, yielded nothing that raises any concerns over its effects on health or the environment. But studies continue. The invention of 2-D materials has created a new box of powerful tools for technologists. Scientists and engineers are excitedly mixing and matching these ultrathin compounds—each with unique optical, mechanical and electrical properties—to produce tailored materials optimised for a wide range of functions. Steel and silicon, the foundations of 20th-century industrialization, look clumsy and crude by comparison.
2016
Top 10 Emerging Technologies of 2016
World Economic Forum (WEF)