Trends Identified

Drug delivery systems
The use of drug delivery systems will radically increase the effectiveness of drug treatments. Highly-porous nanoparticles or nanocapsules could be used as drug carriers. Targeted delivery systems are contributing to cost-effective spending on medicinal substances and reductions in their toxicity, as opposed to significantly levelling out their side effects.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
New materials for chemical sources of electrical current
Many research groups are actively developing technologies relating to nanostructured materials for chemical sources of electrical current. Their use will make it possible to increase the specific capacity of electrodes, increasing the capacity of power sources and allowing for their miniaturisation and safety. An important parameter is also the increasing operating temperatures of these energy sources. Among the most promising chemical sources of electrical current are the following: lithium-ion batteries; fuel cells.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Digital devices with replication and self-healing properties
Digital devices with replication and self-healing properties will become an integral part of the human environment in the long-term. A self-replenishing structure can produce copies of itself with equivalent functional properties. At present, one of the promising ways to solve this problem of self-replication and self-healing on a macro-level is layer-by-layer (additive) 3D-printing technology. To restore protective coatings and electronic circuits polymer capsules with carbon nanotubes are being developed which make it possible to reconstruct membranous constructions or conducting bridges if their integrity is violated. On a micro-level, the development of technologies and devices capable of self-replication, replication of external objects and self-healing will be inextricably linked to breakthrough achievements in nanotechnology, with the greatest impact in this regard coming from the development of molecular self-assembly technologies.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Anthropomorphic robots freely interacting with people
Abroad, there is currently considerable research and development into the creation of anthropomorphic robots freely interacting with people. In current versions, such robots are equipped with a control system including a number of key sub-systems: technical vision; voice control; voice messages; tactile sensing; spatial orientation; walking and stability control; and behaviour control. In future breakthrough research into modelling the functioning of the human nervous system, the dynamics of its value system, and psychological and mental maxims taking into account external and internal factors will be crucial for robotics (and the creation of anthropomorphic robots in particular).
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
New technologies and principles to develop the component base
Maintaining the rate of growth in the ICT sector globally requires continuous increases in the performance of computer technology. At present, the technological process to manufacture Information and Communication Technology semi-finished products and materials reached the atomic level, which is where the Pauli exclusion principle, the Heisenberg uncertainty principle and other fundamental positions in quantum physics limiting the potential to control elementary particles come into play. So as to avoid a collapse of ICT markets caused by a slowdown in the development of the hardware component, which would result in negative effects for the entire global economy, there needs to be timely industrial development of new technologies and principles to develop the component base. The research priorities in this context should be focused on the areas of nanotechnology (electronics based on graphene, fullerene, etc.), photonics and memrister technologies.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
New varieties of plants and breeds of agricultural animals
In the short term new varieties of crop plants and breeds of agricultural animals could be achieved by using molecular markets in selective work, double haploid technologies, genetic engineering, and other methods. It is expected that new varieties and hybrids will have properties such as high nutritional content, increased productivity, and/or other benefits (size of fruit, ripening time), and resistance to diseases, pests and adverse environmental conditions. The development of genome selection technologies will make it possible to develop new, higher quality breeds of agricultural animals (for example, in terms of meat fat content) with faster growth which, in turn, will contribute to rational use of animal feed. The practical introduction of new products will lead to an increase in the efficiency of agricultural production and a reduction in crop losses.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Next-generation biofuels
Efficient technologies to generate biofuels (including motor fuels) will save non-renewable supplies of fossil hydrocarbons, allowing for a significant expansion in the current resource base of the economy, a reduction in greenhouse gas emissions and, ultimately, a reduction in the negative impact of the energy sector on the planet’s climate. The main developmental directions in bioenergy technologies are increases in the energy efficiency of bio-conversion of carbon dioxide gas into motor fuel, reductions in the cost of biofuels, an expanded raw materials base for biofuels (for example, the development of technologies to convert lignocellulose into biofuel), and improvements in quality (stability, environmental cleanliness).
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Molecular self-assembly and self-organisation of nanomechanical systems
As for the distant future it is worth mentioning molecular self-assembly. Products in this group will find the greatest use. Thus, self-assembling microchips will be especially cost-effective, productive and energy-efficient. There is serious potential for medical applications, in particular to develop diagnosis methods and targeted drug delivery systems.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Long-term weather forecasts with long lead times
The role of long-term weather forecasting with a large lead time and a success rate exceeding climate forecasts will grow in environmental forecasting (in particular, dangerous natural phenomena) and economic planning (natural resources and economic risks affected by the climate, trends in climate dependent economic sectors, etc.), which will in turn contribute to the achievement of sustainable development and the security of the country.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Next-generation purification systems
New generation purification systems are based on nanotechnologies in water purification membranes. The availability of technology will lead in the long-term to solving the problem of drinking water shortages in a number of world regions and improving the effectiveness of closed loop water processes in industry with prospects for optimising the sizes and increasing the mobility of existing treatment complexes.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation