Trends Identified

Blockchain – Decentralized Trust
Blockchain is based on distributed ledger technology, which records data (transactions, files, or information) across a peer-to-peer network. Participant can see the data and verify (or reject) it using consensus algorithms. Approved data is entered into the ledger as a collection of “blocks”, stored in a chronological “chain”, and secured through cryptography. The disruptive nature of Blockchain is its ability to move control over interactions from centralized systems to distributed users. For now, legal and institutional barriers restrict a shift away from central systems but blockchain has a high disruptive potential for all trust-bound activities. Four types of blockchain are evolving: the consortium (controlled by a pre-selected group), the semi-private (a single company granting access to any user), and private and public blockchains like Bitcoin and Ethereum. Up to now the consortium model is the most accepted model for business although the technology is still unproven in a larger business context. Blockchain might make systems more transparent, potentially more democratic and help inventing new trust models. It could improve cash flow, compliance and accountability, it could lower transaction costs and reduce fraud. Furthermore, it offers a huge potential to unify flows of payments, physical goods and information in the rather chaotic relationships among untrusted parties, like in complex supply chains. Blockchain will impact organizations and businesses firstly in a first non-disruptive, incremental change, by leaving processes unchanged and realizing cost savings and process improvements. A use case will start around verifications, smart contracting, transparency and accountability, sharing and leasing models, rights, and IP and government records. The second wave of blockchain will radically restructure existing industry sectors or business ecosystems into systems of trust.
2018
Trend Report 2018 - Emerging Technology Trends
SAP
Blockchain
Blockchain is a type of distributed ledger, an expanding chronologically ordered list of cryptographically signed, irrevocable transactional records shared by all participants in a network. Blockchain allows companies to trace a transaction and work with untrusted parties without the need for a centralized party (i.e., a bank). This greatly reduces business friction and has applications that began in finance, but have expanded to government, healthcare, manufacturing, supply chain and others. Blockchain could potentially lower costs, reduce transaction settlement times and improve cash flow. The technology has also given way to a host of blockchain-inspired solutions that utilize some of the benefits and parts of blockchain. Pure blockchain models are immature and can bedifficult to scale.  . However, businesses should begin evaluating the technology, as blockchain will create $3.1T in business value by 2030.  Blockchain inspired approaches that do not implement all the tenets of blockchain deliver near term value but do not provide the promised highly distributed decentralized consensus models of a pure blockchain. Read more: The CIO’s Guide to Blockchain.
2018
Gartner Top 10 Strategic Technology Trends for 2019
Gartner
Blockchain
Blockchain is a database that allows the transfer of value within computer networks. This technology is expected to disrupt several markets by ensuring trustworthy transactions without the necessity of a third party. The proliferation of this technology is, however, threatened by technical issues that remain to be resolved.
2016
OECD Science, Technology and Innovation Outlook 2016
OECD
In transparency we trust
Blockchain has the potential to create transparency that will clear the fog of internet ambiguity, win back lost trust, and repair relationships with the public.
2018
Fjord trends 2018
Fjord
Cryptocurrency
Bitcoin may get all the ink, but there are plenty of other cryptocurrencies, and more to come. Evans says that the way they enable distributed value storage without needing central authority is valuable at a time when people have lost faith in institutions and seek more control over money without governmental intrusion.
2018
The Most Important Tech Trends Of 2018, According To Top VCs
Fast Company
Bio-technology
Biotechnology, genomics, and proteomics 1 are now major driving forces in the biological sciences and are increasingly being applied in the study of environmental issues, medicine and pharmaceuticals, infectious diseases, and modifications of food crops. Bio-technology has the potential to lead to sustainable solutions for a range of sustainable development issues. 2 or example, genetically modified organisms could help address food insecurity in developing countries, but their impact on ecosystems, human health and community values may need to be better understood to be considered a truly sustainable solution. 3 Experience has shown that deployment of such technologies needs to consider the local situations and possible trade-offs. 4 Synthetic biology is a field of great promise and possible dangers. Tailor-made medical solutions, gene therapy, technology disruption in the food industry, bio-engineered medicines, and precise bio-inspired drug delivery systems that target specific infected cells - together with stem cells - give many promises. However, if inappropriately used, it could cause irreversible changes to human health and environment. 5, 6, 7 Synthetic biology requires effective policies and frameworks to manage all stages of their life- time, including manufacturing, distribution and use, as well as safe disposal or where possible effective recycling. 8, 9, 10 New and emerging gene-editing technologies and their implications, benefits, and potential ethical problems for biotechnology and medicine have generated international scientific debate, with recommendations to establish norms concerning acceptable uses of human germline editing and harmonize regulations. 10 Genuine “human engineering” may not be far off in the future, when technologies related to gene-editing, stem cells and computational models of the human brain will be combined.
2016
Global sustainable development report 2016
United Nations
Biotechnology
Biotechnology encompasses a wide range of issues entailing the biological modification of organisms and non-living materials to develop new properties, which have application in medicine, food science and agriculture, and industrial manufacturing. Developments in biotechnology are likely to be swift as indicated by the significant increase in global biotech revenues ($23 billion in 2000 to $50 billion in 2005) and the purchase by large pharmaceutical companies of ‘biotech’ firms in order to secure the most effective avenues for future drug development.
2010
Global strategic trends - out to 2040
UK, Ministry of Defence
Biotechnology processes to obtain recombinant proteins of plant and animal origin
Biotechnological processes to produce recombinant proteins for industrial (enzymes, biopolymers, etc.) and medical (vaccines, antibodies, enzymes) use in plants and animals, or “biofactories”, are cheaper and more effective compared with traditional technologies based on using microbial cultures and animal cells. Thus, technologies to produce recombinant proteins in plants using viral systems, and in the milk of transgenic animals, are one of the key prospective developments in this field.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Metabolic engineering products
Biotechnological processes to produce biologically active compounds based on targeted modification of the producing organism’s pathways using metabolic engineering techniques will make it possible to produce amino acides, vitamins, antibiotics, enzymes, recombinant proteins and other products. The increased effectiveness of new methods of metabolic engineering and bio- engineering against the backdrop of traditional methods (random mutagenesis, etc.) reduces the cost of the product and creates the necessary conditions for mass application in various industries.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation
Biomaterials and organic synthesis products to replace traditional chemical industry products
Biotechnological process to produce biomaterials and organic synthesis products out of renewable raw materials, to replace traditional chemical production and develop innovative products with unique properties would involve the development of the new strains of microorganisms and microbial consortia involved in these processes as well as the development of technologies to produce biosynthetic monomers and polymerisation methods. The replacement of chemical manufacturing with manufacturing based on biotechnological processes to produce materials and organic synthesis products from renewable raw materials will make it possible to create products with a high level of purity (including optically pure organic substances to synthesise drugs) and reduce the cost of their manufacture. New types of biomaterials will have a wide range of applications on account of their special characteristics. A number of products (bioplastics, etc.) will have valuable properties such as biodegradability, and this, in turn, will provide an impetus for the creation of new biodegradable materials for medical and industrial purposes.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation