Trends Identified
Nanosensors
Nanosensors, in particular, are set to have a huge impact. They may open the door to the development
of inexpensive, portable devices that can rapidly detect, identify and quantify biological and chemical substances. These may take the form of specific sensing devices, or may simply be features integrated into the next few generations of mobile phones. As such, nanosensors are expected to lead to revolutionary applications, including early disease detection, real-time health monitoring, the early and accurate detection of environmental pollutants and contaminants, and even biological or chemical weapons.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Nanoscale design of materials
The increasing demand on natural resources requires unprecedented gains in efficiency. Nanostructured materials with tailored properties, designed and engineered at the molecular scale, are already showing novel and unique features that will usher in the next clean energy revolution, reduce our dependence on depleting natural resources, and increase atom-efficiency manufacturing and processing.
2012
The top 10 emerging technologies for 2012
World Economic Forum (WEF)
Nanomaterials
Nano-scale systems often exhibit properties that improve upon or are much different from their human-scale varieties; for example, silver exhibits anti-bacterial properties at the nano-scale that are absent at the macro-scale. As scientists work with materials close to the molecular level, they can produce new and useful materials, such as nanocellulose and nanocarbon. Both have impressive performance characteristics, being respectively 10 and 50 times stronger than steel for their weight. Nanocoatings provide new ways to make structures self-cleaning, more durable and perhaps even able to receive, store and respond to stimuli. Other nanomaterials are excellent catalysts for making chemistry greener and cheaper. Over the next 15 years, nanomaterials will change the types of things we build and how we build them.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Nanomaterials
The group of materials currently attracting most attention are nano-titanium dioxide, nanozinc oxide, fullerenes, carbon allotropes such as nanotubes or graphene, and nanosilver. Those materials are marketed in clearly smaller quantities than the traditional nanomaterials, but the use of some of these materials is increasing fast. Other new nanomaterials and new uses are being developed rapidly. While some nanomaterials offer improvement in established uses e.g. in automotive or construction sector, many are used in innovative applications such as catalysts, electronics, solar panels, batteries and biomedical applications including diagnostics and tumour therapies. Some, due to their unique properties exclusively originating from nanoscale phenomena, can be used for specific applications which cannot be attained by conventional macroscale materials.
2015
Preparing the Commission for future opportunities - Foresight network fiches 2030
European Strategy and Policy Analysis System (ESPAS)
Nanomaterials
Nanomaterials display unique optical, magnetic and electrical properties that can be exploited in various fields, from healthcare to energy technologies. However, technical constraints and uncertainties over their toxicity to humans and the environment continue to hinder their widespread application.
2016
OECD Science, Technology and Innovation Outlook 2016
OECD
Nanodevices
Nanodevices are machines made of a number of molecular parts that do useful work (such as moving
or changing electrically, chemically or optically) in response to specific inputs. Examples include nanoelectromechanical systems (NEMS), nanosensors, nanocomputers and nanorobots. They have surprising energy-efficiency, power density, sensitivity and optical efficiency. Their small size also reduces production costs and increases the number of devices running in parallel, increasing speed. They are likely to be of most use in medical devices, although their small size may lead them to be treated as “smart” drugs. They are also likely to be components of human-scale devices to increase the performance or provide new abilities.
2013
Metascan 3 emerging technologies
Canada, Policy Horizons Canada
Nano/microsatellites
Increasing use is being made of small and very small satellites with growing capabilities. This will give policy makers an expanding spectrum of sophisticated tools to address “grand” challenges for both civilian and defence purposes.
2016
OECD Science, Technology and Innovation Outlook 2016
OECD
Nano-electronics
Nanoelectronics is the advanced technology which exploits qualitatively new phenomena of electric circuits functionality emerging at nanoscales. Particularly promising are applications involving quantum nature of those systems such as quantum coherence and the intrinsic spin of an electron. Current research deals with new generation of quantum devices, which open up horizons for qualitatively new applications such as quantum computing/communication, quantum metrological standards, various logic devices. These developments will provide systemic solutions addressing fundamental limitations of conventional ("More Moore"), and even less conventional CMOS technologies (‘more than Moore’ or ‘Beyond CMOS’). Exploiting a broad variety of materials, phenomena and integrating multiple functions in miniaturised smart systems is the next frontier in Nanoelectronics.
2015
Preparing the Commission for future opportunities - Foresight network fiches 2030
European Strategy and Policy Analysis System (ESPAS)
Nano- and micro-robotics systems
Nano- and microrobotics systems appear to be very promising in terms of their use in medicine, including to develop next-generation surgical devices. In this group, promising products include: movable elements of nano- and microrobotics systems based on laminated nanocomposite materials; integrated equipment based on mechatronic modules to machine complex parts; active nanostructures based on magneto-elastic materials and multiferroics with artificially created critical states, designed for micro-electromechanical systems; mechatronic modules used for spatial positioning of nanosystems and nanotechnological equipment based on incremental micromotors, roller drives and microprocessor control systems.
2016
Russia 2030: science and technology foresight
Russia, Ministry of Education and Science of the Russian Federation